Boundedness of Pluricanonical Maps of varieties of general type - I (Following Hacon-McKernan)

All varieties are over \mathbb{C}
X smooth projective variety of general type i.e. ω_{x} is big
Notation: $\phi_{r}: x \cdots>\mathbb{P}\left(H^{0}\left(x, \omega_{x}^{\otimes r}\right)\right)$
Since ω_{x} is big, ϕ_{r} is binational for $r \gg 0$.
Question: How large does r have to be? In particular, does r depend on X ?
Notation: $r(x)$ denote the smallest r foe which ϕ_{r} is birational.

Main Theorem: For any $n \in \mathbb{N}$. There is a number r_{n} such that if X is smooth prog. variety of general type, $\operatorname{dim} X=n$, then
ϕ_{r} is birational for $r \geqslant r_{n}$

Definitions:

1) Bounded family of varieties:
$\left\{X_{i}\right\}$ is bounded if there is a finite type map of varieties
$\chi \xrightarrow{\pi} B$ such That each X_{i} is isomophic to some fiber of π.
2) Birationally bounded: if the same happens but each X_{i} is only birational to a fiber of π.
3) Volume: X integral prog. var D big divisor

$$
\begin{gathered}
\operatorname{vol}(D)=\limsup _{m \rightarrow \infty} \frac{n l h^{0}(x, m D)}{m^{n}} \\
n=\operatorname{dim} x
\end{gathered}
$$

Properties: D) D is net then

$$
\operatorname{vol}(D)=(\underbrace{D \cdot D \cdots \cdot D}_{\text {dina } \times \text { times }})
$$

2) $\operatorname{Vol}(r D)=r^{n} \operatorname{Vol}(D)$
3) $\operatorname{vol}\left(K_{x}\right)$ is bounded in a bounded family of varieties of general type.
Lemma: X, P (projective vars)
$\cup C X$ domain of definition of φ L effective divisor on Y. Then the divisor L^{\prime} on X extending $\varphi^{*} L / U$ satisfies:

$$
\operatorname{Vol}\left(L^{\prime}\right) \geqslant \operatorname{Vol}(L)
$$

Proof:

$$
\varphi_{1}^{*} L^{\prime}=\varphi_{2}^{*} L+E
$$

effective divisor

Example: X smooth prajivar dim n assume ω_{X} is big. Fix $m \geqslant 1$ L-ample line bundle on X

$$
\begin{array}{ll}
S \in H^{\circ}\left(X, L^{m}\right) & D=\operatorname{div}(S) \\
X_{0}=X \backslash D & \text { smooth divisor }
\end{array}
$$

\mathcal{L} / X_{0} is a line bundle $\mathcal{L} / X_{X_{0}}$ is trivial
Consider the $m^{\text {th }}$ cyclic cover of

$$
\begin{aligned}
X \text { over } D & -Y_{m} \\
Y_{m} & \longrightarrow X
\end{aligned}
$$

$$
\begin{aligned}
& Y_{0, m} \rightarrow X_{0, m} \quad Y_{0, m}=Y_{m} \backslash \pi^{-1}(D) \\
& Y_{m} \rightarrow X \text { is fully ramified } \\
& \text { at } D
\end{aligned}
$$

$$
\begin{aligned}
D_{y} & =\left(\pi^{*} D\right)_{\text {red }} \\
m D_{y} & =\pi^{*} D
\end{aligned}
$$

Local calculation \Rightarrow

$$
\begin{aligned}
& \omega_{y}=\pi^{*} \omega_{x}+(m-1) D_{y} \\
& \omega_{y}=\pi^{*}\left(K_{x}+\frac{m-1}{m} D\right) \\
& \sim \pi^{*}\left(\omega_{x} \otimes L^{m-1}\right) \\
& Y_{1}, y_{2}, Y_{3}, \ldots \\
&\left(\omega_{y m}\right)=\pi^{*}\left(\omega_{x} \otimes \alpha^{m-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{vol}\left(\omega_{y_{m}}\right)=m \operatorname{vol}\left(\omega_{x} \otimes \mathcal{L}^{m-1}\right) \\
& \operatorname{vol}\left(\omega_{y_{m}}\right) \rightarrow \infty \text { as } m \rightarrow \infty
\end{aligned}
$$

$\Rightarrow\left\{Y_{m}\right\}$ are not a bounded family

Motivation/ Sketch of Proof:

$$
\phi_{r}: x \rightarrow \cdots \mathbb{P}\left(H^{0}\left(x, \omega_{x}^{r}\right)\right)
$$

is birational, its enough to show COx separates very general points. ie. there a countable union of closed subvarielies of X say z_{1}, z_{2}, \ldots s.t. if $x, y \in X \backslash \bigcup_{i} Z_{i}$ then $H^{0}\left(x, \omega_{x}^{r}\right) \longrightarrow \mathbb{C}_{x} \oplus \mathbb{C}_{y}$ is surjective.

Suppose
X is a curve. of $g \geqslant 2$

$$
\begin{aligned}
& H^{\prime}\left(X, r K_{x}-P-Q\right)=0 \\
& r \geqslant 3 \text { for any } P, Q \in X .
\end{aligned}
$$

So, we get surjectivety
If $\operatorname{dim} X>1$, we'll use Nadel vanishing in the following way:

Prop: Suppose there is a $\lambda>0$ st. for any two very general points x, y there is a \mathbb{Q}-divisor $D_{x, y}$ st.

1) $D_{x, y} \widetilde{\mathbb{Q}} \lambda K_{x}$
2) x is an isolated point of Zeros $\left(J\left(x_{1}\right)\right)$ and $y \in$ Zeroes $\left(J\left(D_{n}, y\right)\right)$

Then ϕ_{r} is birational if $r>\lambda+1$

$$
r(x) \leqslant \lambda+1
$$

Proof: CO_{x} is big, we choose $m>0$ and an ample H st.

$$
m K_{x}=H+G
$$

$G \geqslant 0$ effective
G does not pass through $x \& y$.

$$
\begin{aligned}
D_{x, y}^{\prime}=D_{x, y}+ & \frac{r-(1+\lambda)}{m} G \\
(r-1) K_{x}-D_{x, y}^{\prime} \widetilde{\mathbb{Q}} & \frac{(r-1)(G+H)}{m}-\frac{\lambda}{m}(G+H) \\
& -\left(\frac{r-(1+\lambda)) G}{m}\right.
\end{aligned}
$$

$$
\approx \frac{(r-1-\lambda)}{m} H \text { ample }
$$

Nadel Vanishing $\Rightarrow H^{i}\left(X, \omega_{x}^{\gamma} \otimes J\left(D_{x, y}^{\prime}\right)\right)$

$$
=0 \text { for } i>0
$$

$D_{x, y}^{\prime}$ also satisfies condition (z)

$$
\begin{aligned}
0 \rightarrow \omega_{x}^{\otimes r} \otimes J\left(D_{x, y}^{\prime}\right) & \rightarrow C \omega_{x}^{\otimes r} \\
& \rightarrow C \omega_{x}^{\otimes r} \otimes \theta_{x} / J\left(D_{x, y}^{\prime}\right)
\end{aligned}
$$

Nadel vanishing \Rightarrow

$$
H^{0}\left(\omega_{x}^{\gamma}\right) \rightarrow H^{0}\left(\omega_{x}^{\otimes r} \otimes \theta_{x} / J\left(D_{3, y}^{\prime}\right)\right)
$$

Sine x was an isolated point of zeroes of $J\left(D_{x, y}^{\prime}\right)$, we can choose
$s \in H^{0}\left(\omega_{x}^{\gamma}\right)$ that vanishes at y but not at x
By symmetry, we get the suyjectivity.

Main challenge: bound λ for which we can produce $D_{x, y}$. (want $\lambda \leq m(n)$)

Something slightly weaker is sufficient:
Prop: Suppose $r(x) \leq \frac{A}{\operatorname{vol}\left(\omega_{x}\right)^{1)^{n}}}+B$
for A, B constants
Then there is an r_{n} st.
$r(x) \leq r_{n}$ for all x of general type.

Pf: $\operatorname{vol}\left(k_{x}\right) \geqslant 1$, then

$$
r(x) \leqslant A+B .
$$

$\operatorname{vol}\left(K_{x}\right)<1$, then
let $\phi_{r(x)}: x \rightarrow \mathbb{P}\left(H^{0}\left(x, \omega_{x}^{r}\right)\right)$ z closure of $\phi(x)$

$$
\begin{aligned}
\operatorname{deg}(z) \leq & \operatorname{vol}\left(\omega_{x}^{r}\right)=r^{n} \operatorname{vol}\left(\omega_{x}\right) \\
& \leq\left(\frac{A}{\operatorname{voll}_{x} k_{1}^{1 / n}}+B+1\right)^{n} \cdot \operatorname{val}\left(k_{x}\right) \\
& \leq(A+B+1)^{n}
\end{aligned}
$$

Hypothesis \Rightarrow if x is of geneal type with $\operatorname{vol}(x) \leq 1$, then X is binational to a bounded degree
subvariety of some projective space.
\Rightarrow Such varieties form a bounded family.

Lemma: $\Pi: X \rightarrow B$ be a bounded family of prog: varieties of general type Then there is an $R>0$ st. if Y is a resolution of any fiber of π, Then $r(y) \leq R$

Pf: We consider a resolution of fiber over each generic point of B and use Noetherian induction.

Log Canonical Centers:
(X, Δ) pair ie. X-normal variety $\mathbb{Q}-\operatorname{div} \Delta$ st. $K_{x}+\Delta$ is \mathbb{Q}-Cactice
$\mu: y \rightarrow X \log$-resolution of (x, Δ) i.e. Y smooth, μ-proper $\mu^{*}(\Delta) \cup E_{x c}(\mu)$ has snc support. Write $K_{y}+\Gamma=\mu^{*}\left(K_{x}+\Delta\right)$

$$
\Gamma=\sum a_{i} \Gamma_{j} \quad \Gamma_{i}-\text { prime divisors }
$$

\log discrepancy of (x, Δ) w.t.

$$
r_{i}=1-a_{i}
$$

A log-cononical center is an irreducible subvar. VCX st. V is the image of $\mu(E)$ for some E (prime divisor) st. $\quad 1-a(E) \leq 0$

A \log canonical place is a valuation Corresponding to E as above.
$\operatorname{LLC}(X, \Delta, x)$ - the set of all log-canonical crates containing $x \in X$.

Main Lemma:
(X, Δ) pair $x \in X$ closed point x kit point of X and (X, Δ) is \log canonical near x.

If $W_{1}, W_{2} \in L L C(X, \Delta, x)$ and W is irreducible component of $W_{1} \cap W_{2}$ then $W \in \operatorname{LC}(X, \Delta, x)$

If (x, Δ) is not Alt, then $\operatorname{LLC}(x, \Delta, x)$ has a unique minimal irred element V.

Moreover, there is a Q-dinsor E st.

$$
\begin{aligned}
& L L C(X,(1-\varepsilon) \Delta+\varepsilon E, x) \\
& \quad=\{V\} \quad \text { for } \quad 0<\varepsilon \ll \mid
\end{aligned}
$$

Lemma: let (x, Δ) log pair x smooth point of X. If multi $(\Delta) \geqslant \operatorname{dim} X$
Then $\operatorname{LLC}(x, \Delta, x) \neq \phi$.
If mull $_{x}(\Delta)<1$, then

$$
\operatorname{LLC}(X, \Delta, x)=\varnothing
$$

